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Abstract—Many existing methods focus on detecting either
objects from different domains or those of rare classes, but it’s
difficult for them to tackle the two issues together. However,
in the real world, due to the difficulty of collecting samples of
special classes, deep learning practitioners have to use simulated
images to substitute for them. To deal with this scenario, in this
paper, we research a new task: cross-domain object detection with
missing classes in target domain, where there are only partial
classes have images and annotations in the target domain. We
devise a simple but effective play-and-plug method to address
this new task, named the three-stage learning approach with
domain and class information preservation. In addition, extensive
experiments demonstrate our method is effective and can boost
the performance when added to existing unsupervised domain
adaptation object detectors.

Index Terms—object detection, unsupervised domain adapta-
tion

I. INTRODUCTION

In real-world applications, object detectors suffer from
the domain gap between development and deployment, e.g.,
different viewpoints, illuminations, etc., which greatly drops
performance of object detectors. To popularize the application
of object detection, how to mitigate the domain gap is an
unavoidable problem. [1] [2] have adopted the gradient reverse
layer via which models can learn domain-invariant features,
to handle unsupervised domain adaptation for object detection
(abbr. UDA-OD) as illustrated in Fig. 1a. [3] addresses the
class-imbalance problem that hinders the usage of pseudo-
labelling technique which is commonly used in UDA-OD. [4]
introduces category adaptation and bounding box adaptation
based on margin disparity discrepancy theory to handle the
challenges in UDA-OD.

Apart from the domain gap, a robot deployed in the real
world is likely to encounter rare classes that are not collected
in the training data. Many few-shot object detection (FSOD)
methods [5] [6] are developed to solve this issue by learning
fast from only a few samples including objects of these classes
as shown in Fig. 1b, whilst zero-shot object detection (ZSOD)
methods [7] [8] achieve this goal by transferring semantic
class-level information contained in word phrases or attributes,
as shown in Fig. 1c. [6] proposes a soft-attention module
to calculate class attentive weights from few-shot samples,
and use these weights to remodel R-CNN predictor heads for
detecting objects. [7] introduces the transformer into ZSOD

and outperforms the state-of-the-art at that time. [8] develops
a novel semantics-guided contrastive network that aligns the
region features and the related semantic information better.

However, the domain gap and the rare class problems
usually appear together, since the real world is diverse, change-
able, and complicated. For example, developers plan to deploy
a robot in the real world, but they can only collect and
annotate a few samples from the real world because of limits
on resources and manpower. Furthermore, rare classes may
never appear in the collected real-world data, and thus the
developers have to generate many simulated data to cover
these classes. So we expect a robot to utilize the few real-
world samples and abundant simulated samples to solve our
above-mentioned task. Several works [9] [10] have considered
the domain gap and the rare class problems together, but their
specific task settings are distinct from ours. [9] proposes a
partially zero-shot domain adaptation task, in which the data
from target domain are unlabeled. [10] processes the few-shot
domain adaptation and few-shot recognition jointly, but a few
target domain samples of rare classes are available for their
task. Besides these, the two methods consider only recognition.

In this work, we propose firstly the novel cross-domain
object detection with missing classes in target domain, which
has some different sides to UDA-OD, FSOD and ZSOD.
When dealing with the new task, UDA-OD methods need to
alleviate the problem incurred by the missing classes in target
domain, whereas FSOD and ZSOD methods are required to
adapt into a different domain. Therefore, we devise a play-
and-plug method to advance performance, which is established
on the foundation of UDA-OD models. We utilize a domain
information learning stage to master domain information, a
missing class learning stage to obtain class information, and
a domain information recalling stage to recall learned domain
information and meanwhile retain class information with the
help of an information preservation technique. Finally, exten-
sive experiments demonstrate our plugin method is effective
and can boost the performance of base models.

II. TASK DESCRIPTIONS

In our task settings as illustrated in Fig. 1d, training data
consist of images and corresponding annotations from source
domain and target domain. But some images with missing
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Fig. 1: Comparison between unsupervised domain adaptation, few-shot learning and our new-proposed task. Different colors
and shapes denote samples of different domains and categories, respectively. Hollow shapes mean corresponding annotations
are unavailable. Dashed shapes mean the corresponding images are unavailable.

classes only appear in source domain and images with anno-
tated objects of these classes are removed in target domain.

On the point of processing images containing missing
classes, our setting is different from class-incremental object
detection [11] and few-shot object detection [5]. In class-
incremental object detection, all images with objects of seen
classes in old episodes can be still utilized for learning in
current episode, where only annotations of seen classes are
inaccessible. Analogously, “novel” does not mean that objects
of novel classes are never seen when we train a model using
data of base classes for few-shot object detection. We think
this setting is unreasonable because the classes we hope the
model has never seen have been actually seen. Therefore, to
be consistent with the realistic applications, we choose to pick
out all images including objects of the missing classes.

A. Notations

We denote the whole training data in source domain as Us.
The source training dataset of remaining classes is S1 and the
source training dataset of missing classes is S2. Analogously,
the target training dataset of remaining classes and missing
classes are denoted as T1 and T2, respectively. The whole
training data in target domain Ut should have contained T1
and T2 for supervised object detection, i.e., Ut = T1 ∪ T2, but
for the new task, the training data only include T1. There are
some natural properties for our new-proposed task:

S1 ∩ S2 = ∅,S1 ∪ S2 = Us,
T1 ∩ T2 = ∅, T1 ∪ T2 = Ut.

The label set of all annotated objects is Y . We represent the
label set of S1 and S2 as Ys1 and Ys2 , respectively. Similarly,
for the datasets T1 and T2, their corresponding label sets are Yt1
and Yt2. When diversity and quantity of images are adequate,
some interesting relationships possibly exist:

Ys1 = Yt1, Ys2 = Yt2,
∅ 6= Ys1 ∩ Ys2 , Y = Ys1 ∪ Ys2
∅ 6= Yt1 ∩ Yt2, Y = Yt1 ∪ Yt2.

Notice that equations in the first row do not definitely hold,
because some classes maybe coexist with missing classes in
one domain but the property may not share across domains.

For object detection, annotations of all objects in an image
are composed of three parts: an image xi, a bounding box list
bi and a category label list yi, which are denoted by a triple
(xi,bi, yi). Based on this notation, we denote the source train-
ing dataset of remaining classes as S1 = {(xsi ,bsi , ysi )}Mi=1,
and the one of missing classes as S2 = {(xsi ,bsi , ysi )}

M+N
i=M+1,

where M and N are both the number of images of corre-
sponding datasets. In an akin way, T1 = {(xti,bti, yti)}Pi=1

and T2 = {(xti,bti, yti)}
P+Q
i=P+1, where P and Q are the

corresponding number of images.

B. Task Differences

As illustrated in Fig. 1d, the whole training data of the
new-proposed task only contain source dataset Us and target
dataset T1. In contrast, the task a UDA-OD model can tackle
have only access to the dataset Us and images {xti}

P+Q
i=1 .

Compared with the new-proposed task, UDA-OD has three
key distinctions. UDA-OD can be a transductive learning [12]
task while our task is of inductive learning. This is because
UDA-OD can utilize images of test dataset in the training
phase. Thus, models can touch information comprised in test
images in advance, which assists models to have a great
performance. But test data including images and annotations
are not accessible in our new task. Another difference is UDA-
OD has no bounding boxes and category labels for training
data in target domain. The last but critical difference is data
in target domain for our new task miss some classes and any
image has no possibility to appear in training phase as long as
it comprises objects of missing classes, whereas the covered
classes in target domain are identical with those in source
domain for UDA-OD. This difference exists as well between
the new-proposed task and FSOD. Besides this, FSOD has
no cross-domain requirement and the training data of novel
classes are scarce. Compared to ZSOD, the new task cannot
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Fig. 2: Overview of the three-stage learning approach.

use attributes or phrases but can access the annotated samples
in the source domain.

III. ALGORITHMS FOR THE NEW TASK

A. Overview

Compared with UDA-OD, our new task cannot use data with
objects of missing classes, i.e., dataset T2 in training phase,
but could take advantages of annotations in dataset T1, which
provides information on objects of missing classes in target
domain.

In order to solve this new task, a model should have the
capacity to capture general domain-invariant information of
missing classes from dataset S2. On the other hand, the
model need to consolidate the obtained domain information
about objects of remaining classes, with the help of annotated
instances in dataset T1. Therefore, we devise our three-stage
learning method based on these two considerations.

B. Three-stage learning approach

In this subsection, we introduce a three-stage learning
approach for the new task, as shown in Fig. 2. We choose a
typical anchor-based object detector Faster R-CNN [13] as our
base detection model. Faster R-CNN includes mainly a back-
bone, a region proposal network (RPN) and a pair of region-
of-interest heads (RoI heads). The RoI heads are composed of
a category classifier and a bounding box regressor, to classify
correctly and localize accurately instances, respectively. The
joint loss for object detection is commonly denoted as

Ldet = Lrpn
cls + Lrpn

reg + Lroi
cls + Lroi

reg. (1)

In this loss formula, Lrpn
cls represents the box-classification

loss of discriminating foreground from background, and Lrpn
reg

denotes the regression loss of localization for RPN. In a similar
way, Lroi

cls and Lroi
reg represent the multi-classification loss and

localization loss for every instance, respectively.
Domain information learning. UDA-OD methods usually

have a competitive capacity to mitigate domain gap after

Stage1
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Fig. 3: Diagram of optimization trajectories in three stages.
Solid shapes denote model parameters. The purple round rep-
resents initial parameters. Dashed arrow is the parameter path
without domain and class information preservation. Parameters
on an ellipse of the same color have equivalent performance.

learning on datasets S1, S2 and {xti}Pi=1, and thus we train
in the first stage a UDA-OD model on datasets S1, S2 and
{xti}Pi=1. Based on this point, our method is extensible to any
UDA-OD method which does not depend on target domain
data of missing classes, i.e, T2. We simplify the optimization
objectives of base methods as

L1(φ,θ) = E(xi,bi,yi)∈DL
det, (2)

where D = S1 ∪ S2 ∪ {xi}Pi=1, and φ,θ denote the corre-
sponding learnable parameters of feature extractor and the box
predictor, respectively.

Class information learning. In the second stage, we fine-
tune the model on dataset S2. This is because this dataset is
the only dataset containing information on objects of missing
classes among all three datasets S1, S2 and T1, which are
accessible in training phase and we need to obtain adequate
class information to remedy the lack of dataset T2. Wang et.al
[14] demonstrates that parameters in RoI heads are plentiful
to transfer features from base classes to novel classes in few-
shot object detection. So, we only fine-tune parameters of
RoI heads. The optimization objective in the second stage is
denoted as follows

L2(θ) = E(xi,bi,yi)∈S2L
roi
cls + Lroi

reg. (3)

Domain information recalling. Apart from the operations
above, in the third stage, we further fine-tune our model
on dataset T1 which is the only dataset implying domain
information that we can access in training phase, since our
final objective is to make the model have an excellent ob-
ject detection performance on test dataset of target domain.
Although the UDA-OD base model has achieved the domain
information in the first stage, the direct fine-tuning on dataset
S2 changes many model parameters that are beneficial for
preserving domain information. Hence, the obtained domain
information is likely to be interfered, and fine-tuning on dataset
T1 is required to recall domain information. In the third stage,
the goal of parameter update is to minimize the following loss:

L3(θ) = E(xi,bi,yi)∈T1L
roi
cls + Lroi

reg. (4)
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Algorithm 1: 3-stage learning with DCIP.
Input: source domain dataset S1 and S2, target

domain dataset T1, training epochs K1 in
second stage and K2 in third stage.

Output: model parameters φ,θ
1 Initialize model parameters φ0,θ0 ;
// Domain information learning

2 Train a UDA-OD model on datasets
D = S1 ∪ S2 ∪ {xti}Pi=1 with the objectives simplified
as L1(φ,θ) to achieve parameters φ,θ ;
// Class information learning

3 for t = 1 to N·K1 do
4 Sample a batch data B = {(xj ,bj , yj)}j from S2 ;
5 Calculate the loss of detection on this batch

according to L2(θ
t) ;

6 Backward the loss above in the computational
graph to get gradients
∇θi

∑
j log p(xj |φt,θt), θi ∈ θt ;

7 if in the last epoch then
8 Calculate diagonal elements of FIM iteratively

as follows
F tii = F t−1ii + 1

|B|
[
∇θi

∑
j log p(xj |φt,θt)

]2
;

9 end
10 θt+1 = θt −∇θt

∑
j log p(xj |φt,θt) ;

11 end
// Domain information recalling

12 for t = N·K1+1 to N·K1+P·K2 do
13 Sample a batch data B = {(xj ,bj , yj)}j from T1 ;
14 Calculate the loss of detection on this batch

according to L̃3(θ
t) ;

15 Backward the above loss and update parameters
θt+1 = θt −∇θtL̃3(θ

t) ;
16 end

C. Domain and class information preservation

The naive three-stage learning approach described in III-B
exists a heavy problem that the latter learning stage could
destroy the approximate optimal parameters which is achieved
in the former learning stage, as shown in Fig. 3 . An analogous
phenomenon has been sufficiently researched in continual
learning community and is named catastrophic forgetting [15],
appearing in task, domain and class incremental scenarios [16]
where a model is expected to learn a sequence of subtasks.

To handle the problem, we adopt Fisher information matrix
(FIM), whose effectiveness has been validated by elastic
weight consolidation [17] in domain-incremental classification
and by IncDet [11] in incremental object detection, to measure
the importance of parameters for the seen dataset and use the
degree of importance to constrain the changes of parameters.
Specifically, if a parameter is very important for the learned
dataset S2, then when we are fine-tuning the model in dataset
T1, this parameter should have never changed in an ideal
situation and only less important parameters will be varied

for improving performance on the target dataset T1. In a
mathematical perspective to formulate this fine-tuning stage,
we need to maximize the posterior p(θ|S2, T1) where θ is the
parameters of RoI heads that we aim to fine-tune in the third
stage. According to Bayes rule,

p(θ|S2, T1) =
p(S2, T1|θ) · p(θ)

p(S2, T1)
, (5)

p(S2|θ) · p(θ) = p(S2) · p(θ|S2). (6)

From the rule of multiplication of probability, we have

p(S2, T1|θ) = p(T1|S2,θ) · p(S2|θ), (7)
p(S2, T1) = p(T1|S2) · p(S2). (8)

Moreover, the prior probabilities of datasets S2 and T1 are
independent because S2 ∩ T1 = ∅, and hence we have

p(T1|S2,θ) = p(T1|θ). (9)

Applying Eq. 7, 6, 8 and 9 in order on Eq. 5, we can derive

p(θ|S2, T1) =
p(T1|θ)p(θ|S2)

p(T1|S2)
. (10)

After adopting negative logarithm on both sides of Eq. 10, the
final loss in the third stage is formulated as follows:

L̃3(θ) =− log p(θ|S2, T1)
=− log p(T1|θ)− log p(θ|S2) + log p(T1|S2).

(11)

Since the term log p(T1|S2) is a constant, we ignore it
when minimizing the final loss. The second term in the right
side of Eq. 11 is intractable and can be approximated using
Fisher information matrix as in [11] [17]. Considering the base
model has had a competitive performance on target domain,
we replace model parameters after training on S2 with those of
the base model after training on D as the pivot values. Finally,
we simplify the calculation of loss L̃3(θ) as

L̃3(θ) = L3(θ) +
∑
i

λFii(θi − θ∗D,i)2, (12)

where L3(θ) = − log p(T1|θ) whose calculation obeys Eq.
4, θ∗D,i is the parameter value of the model after training
on dataset D, Fii is a diagonal element of FIM for efficient
computation and λ is a tradeoff hyper-parameter. For our task
settings, the elements of Fisher information matrix can be
calculated as follows

Fij = E(x,·,·)∈S2

[
∂ log p(x|φ,θ)

∂θi
· ∂ log p(x|φ,θ)

∂θj

]
. (13)

We abbreviate the domain and class information preservation
to DCIP and our entire method is summarized in Alg. 1.

IV. EXPERIMENTS

In this section, we introduce datasets in Section IV-A, im-
plementation details in Section IV-B and compare our method
against a state-of-the-art method of UDA-OD on plenty of task
settings of our new-proposed task in Section IV-C.
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TABLE I: Ablative study from PASCAL VOC to Clipart1k when 20% classes are missing. Upper Bound means training
data include annotations of objects of all classes. +2-stage means adding class information learning and domain information
recalling stages. +DCIP means adding domain and class information preservation. mAP is the averaged AP50 over 20 classes.

Method +2-stage +DCIP aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

D-adapt [4]
46.9 54.0 29.6 40.3 44.7 55.1 48.6 21.9 43.6 63.4 28.2 17.5 46.7 70.0 65.0 43.7 29.9 33.2 44.2 55.4 44.1

X 51.7 56.0 40.3 43.2 40.1 41.4 50.5 22.5 51.4 52.9 54.8 25.9 43.5 67.0 75.3 51.0 23.4 22.9 38.2 32.6 44.2
X X 46.75 62.3 41.0 45.2 38.7 34.8 56.2 19.0 51.5 64.5 57.5 25.6 48.7 69.7 71.2 55.8 34.3 18.8 35.2 50.7 46.4

Unbiased [3]
34.4 69.1 30.1 33.0 48.5 40.8 24.2 3.0 19.0 17.9 46.7 3.8 34.3 77.9 67.1 53.7 16.2 9.1 17.1 20.0 33.3

X 33.3 61.4 37.9 31.8 48.8 31.1 51.4 22.3 54.1 26.7 38.9 13.9 46.3 62.7 74.9 47.4 9.3 4.5 24.2 9.1 36.5
X X 29.9 56.6 33.9 21.9 45.2 59.3 58.9 18.7 50.1 31.9 49.7 8.4 39.8 68.8 72.2 47.2 10.1 4.5 26.6 10.9 37.2

Upper Bound – – 56.2 64.6 36.5 52.2 48.0 69.0 57.7 25.3 50.3 67.7 53.7 38.4 55.6 80.1 75.2 52.4 42.6 34.3 60.7 57.9 53.9
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Fig. 4: Qualitative results on the Clipart1k when 20% classes
are missing. “Baseline” is the D-adapt method.

A. Datasets

We conduct our main experiments on the PASCAL VOC
2007 and 2012 detection datasets and Clipart1k dataset, which
all include 20 categories of objects with annotations. In
PASCAL VOC 2007, there are 5011 images in trainval split
and 4952 in test split, while PASCAL VOC 2012 dataset
comprises 11540 images in trainval split and its test split is
not available in public. For Clipart1k that consists of 1000
clipart images, it is split into train and test splits both with
500 images. Same as the conventional settings, we treat the
PASCAL VOC 2007 and 2012 as the source domain and the
Clipart1k as the target domain. We view the last percent of
20 categories in alphabetical order as the missing classes. The
test split of Clipart1k is reserved for only testing and the train
split of remaining classes are accessible in training phase.

B. Implementation Details

We adopt ResNet101 [18] as the backbone network and the
implementation details of the first stage are consistent with
those in [4]. mAP@0.5 is chosen as the evaluation metric [4]
[11]. We set learning rate as 2.5× 10−5 and use exponential
annealing learning-rate schedule with γ = 0.2. After training
in the first stage, the models are fine-tuned 2 epochs in the
second stage and 10 epochs in the third stage. λ is set as 0.1.

C. Results Analysis

We first show ablative study from PASCAL VOC to Cli-
part1k when 20% classes are missing. As shown in Table
I, applying our 3-stage training with modified EWC could
boost performance on the base of D-adapt [4] and Unbi-
ased [3] and the effectiveness of every module is validated.
We show a few qualitative results in Fig. 4 as well. As
can be seen from the first column in Fig. 4, our entire
method can detect the blue diningtable when compared to
the naive 3-stage training approach, and the girl with blond
hair and the boy in blue in the center of the image when
compared to the baseline. In the second column of Fig. 4,
the baseline mistakenly detects a tvmonitor but cannot detect
the white horse in the center which is also lost for the 3-
stage training but detected via our entire method. The last
column of Fig. 4 shows us a failure example.The models are
all confused by local characteristics of the aeroplane, whose
partial image is indeed akin to a chair even for a human.
This failure is thought to be originated from that CNNs focus
on local images overmuch and overlook global information.

TABLE III: Effects of λ from
PASCAL VOC to Clipart1k
when missing 20% classes.

λ mAP AP AP75

0.01 45.1 22.8 18.9
0.1 46.4 23.6 20.4
1 43.7 21.6 18.0
10 41.7 20.6 17.7

Moreover, the effect of λ is
shown in Table III and the
reported results in Table I and
II are both based on λ = 0.1.

To investigate the effect
of the number of missing
classes, we further conduct
experiments with 10%, 20%,
30% , 40% and 50% missing

classes. Compared with the baseline, our method achieves 2.3,
2.0 and 2.2 increases in mAP when 20%, 30% and 40%
classes are missing, respectively, as shown in Table II. In the
scenario of missing 10% or 50% classes, the performance of
our method is equivalent or close to the baseline’s, and we
think the former is caused by severe class-imbalance of dataset
S2 as shown in Fig. 5a while the latter suffers from the lack
of instances in dataset T1 as shown in Fig. 5b. Along with
the increase of missing classes, models’ performance have
a downward trend, but the decreased performance between
scenarios of missing 10% and 20% classes is minor. This is
because the number of instances in T1 scarcely changes when
the percentage of missing classes varies from 10% to 20%,
which is revealed in Fig. 5c. There is an obvious decrease
of mAP between missing 20% and 30% classes, to which
the performance decrease of “mbike” contributes the most.
We think the reasons are the number of “person” instances
is larger than any other classes as shown in Fig. 5, and
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TABLE II: Results of missing different percentages from PASCAL VOC to Clipart (ResNet101). The results are evaluated on
test split of Clipart1k. The “base” denotes D-adapt method.

Test on Clipart aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

miss 10% base 46.0 56.5 33.8 40.1 42.2 63.5 47.0 18.6 47.1 62.8 38.5 15.2 56.1 71.1 69.5 46.6 21.4 37.1 52.8 51.1 45.8
+ours 45.8 61.3 39.5 45.3 42.9 49.9 52.0 22.6 52.2 61.7 54.6 28.5 53.7 64.3 76.1 54.1 38.9 23.6 20.7 29.3 45.8

miss 20% base 46.9 54.0 29.6 40.3 44.7 55.1 48.6 21.9 43.6 63.4 28.2 17.5 46.7 70.0 65.0 43.7 29.9 33.2 44.2 55.4 44.1
+ours 46.75 62.3 41.0 45.2 38.7 34.8 56.2 19.0 51.5 64.5 57.5 25.6 48.7 69.7 71.2 55.8 34.3 18.8 35.2 50.7 46.4

miss 30% base 41.8 53.1 28.1 37.3 43.8 76.6 41.4 5.5 42.1 51.3 38.2 9.1 36.7 45.3 53.2 45.6 13.8 27.8 43.1 52.9 39.3
+ours 42.3 58.6 24.0 39.3 34.9 62.8 49.4 13.4 46.0 75.8 55.0 4.3 37.3 74.8 44.5 39.9 20.4 13.6 42.5 47.7 41.3

miss 40% base 43.4 46.0 31.4 39.6 40.4 52.3 43.2 17.7 42.8 54.7 28.3 10.3 46.4 74.4 58.8 45.4 22.8 29.5 40.1 51.9 41.0
+ours 47.2 59.6 30.5 42.4 41.9 76.4 49.2 17.1 48.7 60.5 53.2 3.8 43.4 65.0 44.8 41.9 22.5 26.4 42.3 47.6 43.2

miss 50% base 43.7 52.6 26.5 38.6 39.1 73.4 41.0 6.0 41.6 41.4 32.0 6.4 44.9 59.4 49.1 42.2 19.8 29.1 51.0 51.5 39.5
+ours 49.8 63.7 23.9 39.2 35.5 79.8 55.1 14.4 42.2 46.3 41.3 7.0 41.8 53.0 43.5 42.0 15.9 16.7 31.0 50.0 39.6

D-adapt [4] 56.4 63.2 42.3 40.9 45.3 77.0 48.7 25.4 44.3 58.4 31.4 24.5 47.1 75.3 69.3 43.5 27.9 34.1 60.7 64.0 49.0
Upper Bound 56.2 64.6 36.5 52.2 48.0 69.0 57.7 25.3 50.3 67.7 53.7 38.4 55.6 80.1 75.2 52.4 42.6 34.3 60.7 57.9 53.9

1 17 1 4

191

4
95

37

544

0 55 36 4 0

1170

206

0

187

984

1193

30 20
141

55 46 11
113

27
160

25 60 30 45 7

586

74 43 24 0 0

0

200

400

600

800

1000

1200

1400

aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv

#
in
st
a
n
ce
s

VOCMiss Clipart

(a) Comparison between S2 and T1 when 10% classes are missing

177 862 174 466
1514

418
1936

321

3744

243 1057
2079

1156 1141

15576

1724 1347 1211 984 1193
26 5 89 32 14 8 84 12 29 18 0 0 0 0 0 0 0 0 0 0

0

5000

10000

15000

20000

aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv

#
in
st
a
n
ce
s

VOCMiss Clipart

(b) Comparison between S2 and T1 when 50% classes are missing

30 20

141

55 46
11

113

27

160

25
60

30 45
7

586

74
43 24 0 0

30 20

133
54 45

11

112

24

152

19
55

24 41
7

554

71

0 0 0 0
0

100

200

300

400

500

600

700

aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv

#
in

st
a

n
ce

s

Miss 10% Miss 20%

(c) Comparison between T1 when 10% and 20% classes are missing

Fig. 5: Comparisons of the number of instances in datasets.

the spurious correlations [19] between “person” and “mbike”.
Because models have more opportunities to meet “person”
instances in the training, models will pay more attention to
“person” instances. When the dataset misses 30% classes, the
number of “person” instances in target domain will be zero
whereas samples with “mbike” can be still available. Due to a
model trained in source domain relies on “person” instances to
detect “mbike”, the model loses the ability to detect “mbike”
without the help of annotations when missing “person” in
target domain, causing the large reduction of the mAP for
the base model. But our method can utilize annotations of
“mbike”, and hence mitigates this problem.

V. CONCLUSION

To the extent of our knowledge, this work is the first in
the literature to research a new cross-domain object detection
with partially missing classes in target domain. We describe
the new task and its relationships with other analogous tasks
accurately. Aiming at two requirements of domain adaptation
and class generalization, we devise a 3-stage learning approach
with DCIP. Experiments validate our approach is effective and
can improve performance of the base methods as a plugin. We
think models with the ability to capture global information will
be a promising avenue to explore, e.g. Vision Transformers.
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